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Abstract
Learning how to reach goals in an environment is a longstanding challenge in AI,
yet reasoning over long horizons remains a challenge for modern methods. The key
question is how to estimate the temporal distance between pairs of observations. While
temporal difference methods leverage local updates to provide optimality guarantees,
they often perform worse than Monte Carlo methods that perform global updates (e.g.,
with multi-step returns), which lack such guarantees. We show how these approaches
can be integrated into a practical offline GCRL method that fits a quasimetric distance
using a multistep Monte-Carlo return. We show our method outperforms existing
offline GCRL methods on long-horizon simulated tasks with up to 4000 steps, even
with visual observations. We also demonstrate that our method can enable stitching
in the real-world robotic manipulation domain (Bridge setup). Our approach is the
first end-to-end offline GCRL method that enables multistep stitching in this real-world
manipulation domain from an unlabeled offline dataset of visual observations.1

1 Introduction
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Figure 1: In this paper, we present Multistep Quasimetric Estimation (MQE). Unlike prior work in
quasimetric distance learning that use single-step TD updates (Wang et al., 2023) or contrastive learning-
based Monte-Carlo updates (Myers et al., 2024), MQE is the first work to incorporate multistep returns
with real-world success.

It is natural for humans to use inherent ideas of distances to represent task progress: a GPS will tell you
how far you are from the destination and a cookbook will tell you how long a recipe will take. Humans

1Website and code: https://mqe-paper.github.io

https://mqe-paper.github.io
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can solve tasks by taking the shortest route possible (stitching) and combining several learned tasks
together in sequence in a new environment (combinatorial generalization). The AI problem of reaching
goals presents a rich structure (formally, an optimal substructure property) that can be exploited to
decompose hard problems into easy problems, and reinforcement learning (RL) has been used to address
such problems. However, many past attempts at leveraging this property in modern high-dimensional,
stochastic settings still need much work. Current approaches tend to separate TD learning (local updates)
(Kostrikov et al., 2022; Kumar et al., 2020; Mnih et al., 2013) and MC learning (global value propagation)
(Eysenbach et al., 2022; Myers et al., 2024); as TD learning can theoretically recover the optimal Q
function (Q∗), while MC methods can only recover the behavior Q function (Qβ), but tend to work well
in practice.

However, the effectiveness of both the temporal difference and Monte Carlo methods degrades, often
from a combination of increasing the horizon length for TD methods (Park et al., 2025b) or difficulties
in finding the optimal temporal distance (Park et al., 2024a). These combined challenges present an
intriguing opportunity to find methods that can leverage the advantages of both approaches, where one
can perform both local and global value propagation at once.

Our main contribution lies in Multistep Quasimetric Estimation (MQE), an offline GCRL method that
incorporates both multistep value learning and quasimetric architectures without needing explicit
hierarchy. By leveraging such a unique combinations of the benefits of TD and MC methods, MQE
allows the learned policy to (i): display a much stronger level of horizon generalization compared to
previous methods, which allow us to demonstrate the desired “stitching” behavior, (ii): provide a stable
method that can extract strong goal-reaching policies even from noisy data, and (iii): such stability in
training allows it to be applied in real-world robot learning problems without additional design choices.
To our knowledge, MQE is the first method capable of taking advantage of multistep TD returns with
global value propagation through quasimetric architectures. MQE achieves SoTA performance on tasks
that require complex control and long-horizon reasoning (up to 21 DoF and 4000 timesteps respectively),
and in real world robotic settings, MQE displays compositional generalization behaviors that are not
seen in previous RL algorithms.

2 Related Work

Our work build upon previous works in offline RL and temporal distance learning.

Goal-conditioned Reinforcement Learning. Recent work has studied the stitching and horizon gen-
eralization capabilities of GCRL. Park et al. (2025b) show that while offline RL is easy to scale on
short-horizon tasks, it is difficult to learn long-horizon tasks that require more complex reasoning within
the agent, which can easily deviate from the optimal distance due to compounding TD errors. Other
findings have shown that combinatorial generalization and stitching do not necessarily need dynamic
programming (Brandfonbrener et al., 2023; Garg et al., 2023; Ghugare et al., 2024), which gives promise
to using simpler methods for learning stitchable policies.

Offline RL for Robotics. We demonstrate offline GCRL scaling to real-world robotic tasks. Although
reinforcement learning has been used to obtain highly capable specialist policies in various embodiments
(Ball et al., 2023; Luo et al., 2025; Seo et al., 2025; Smith et al., 2023), behavior cloning still remains the
most capable method for training generalist policies (O’Neill et al., 2024). Efforts have been made to
allow self-supervised and offline RL in robotics (Zheng et al., 2024), however, directly training a policy
with offline RL remains difficult, as many researchers have instead used other ways to incorporate
RL, such as rejection sampling (Nakamoto et al., 2025; Wagenmaker et al., 2025) or data set curation
(Mark et al., 2024; Xu et al., 2024). We show that our method can use multistep quasimetric learning to
obtain effective policies for real-world robotic tasks, outperforming non-GCRL methods on long-horizon
manipulation.
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Multistep RL. RL using multistep returns has been widely used in online RL and offline-to-online RL
settings (Li et al., 2025; Tian et al., 2025). This is desirable because in on-policy settings, performing RL
with multistep return is theoretically correct and yields better performance (Asis et al., 2018; Munos et al.,
2016; Schulman et al., 2016). However, in an offline setting, the theory behind such correctness breaks
down (Watkins, 1989), as the learning paradigm becomes an inherently off-policy manner. Methods that
use the entire trajectory in a Monte Carlo manner and attempt to recover the Q function can also be
seen as a multistep RL algorithm (Eysenbach et al., 2022). However, such approach can only recover the
behavior Q function Qβ (Eysenbach et al., 2022; Myers et al., 2024).

Temporal Distance Learning. Our work is closely related by works that focus on successor representa-
tions (Blier et al., 2021; Dayan, 1993) and uses them to learn the probability of reaching goals. Previous
works have shown that by using contrastive learning, (Myers et al., 2024) Other works have also shown
that using contrastive learning as a way to parameterize distance learning may also recover behavior Q
function (Eysenbach et al., 2022). Previous works (Eysenbach et al., 2021; Myers et al., 2025c) have shown
that it is possible to learn an optimal goal-reaching policy and Q function in theory. Our work differs in
that we learn a Bellman optimal Q function under the bias of behavioral dynamics. This tradeoff helps
us achieve considerable empirical gains in long-horizon goal-reaching tasks, and shows compositionality
in real-world robotic learning problems.

3 Preliminaries
In this section, we define temporal distances and our learning objective.

Notation. We consider a controlled Markov process (CMP) M with state space S, action space A,
transition dynamics P(s′ | s, a), and discount factor as γ. We consider goal-reaching policies π(a | s, g) :
S × S −→ A ∈ Π. We denote the behavior policy as πβ . In lieu of rewards, we optimize the maximum
discounted likelihood of a policy reaching the goal, in which we can represent the goal-conditioned Q
function and the value function as:

Qπg (s, a) ≜ E{st,at}∼π

[ ∞∑
t=0

γt P(st = g | s0 = s, a0 = a)
]
. (1)

V πg (s) ≜ E{st}∼π

[ ∞∑
t=0

γt P(st = g | s0 = s)
]
. (2)

Equivalently, we can define the optimal Q-function as Q∗
g(s, a) ≜ maxπ∈ΠQ

π
g (s, a). Previous work have

shown that using contrastive leaning (Eysenbach et al., 2022; van den Oord et al., 2019) can recover the
behavior distance, but not the optimal distance.

Similarly, prior work on MC learning (Eysenbach et al., 2021, 2022; Myers et al., 2024) has demonstrated
that future states can be used as goals. We use geometric distribution as described in Eq. (3). This allows
us to classify any future state in trajectory as goals, providing a robust way of learning goal-reaching
policies.

s+t ≜ st+K ,K ∼ Geom(1− γ). (3)

Quasimetric distance representations. Traditionally, offline RL algorithms use neural networks to
represent the critic and value function Qg(s, a) and Vg(s) (Kostrikov et al., 2022; Kumar et al., 2020).
Separately, other works have been using dot products Q(s, a, g) ≜ φ(s, a)⊺ψ(g) (Eysenbach et al., 2022;
Zheng et al., 2024) or geometric norms ∥φ(s)− ψ(g)∥k for suitable values of k (Eysenbach et al., 2024;
Park et al., 2024c). We use quasimetric architectures (Pitis et al., 2020; Wang et al., 2023) to parameterize
our value functions.
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Formally, the space of quasimetric distances QX over a set X is defined as the set of functions d :
X × X −→ R≥0 that satisfy the following properties for all x, y, z ∈ X (Cobzaş, 2013):

(i) Non-negativity: d(x, y) ≥ 0.

(ii) Identity: d(x, x) = 0.

(iii) Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z).

We will also use the notation DX to denote the more general class of distances that satisfy only (i) and
(ii).

To enforce the quasimetric properties of the successor distances, we use the Metric Residual Network
(MRN) architecture (Liu et al., 2023), which parameterizes a space of quasimetrics in terms of a learned
representation, as shown in Eq. (4). MRN splits the representation into N equally sized components,
and in each part, takes the sum of an asymmetric component (maximum of ReLU) and a symmetric
component (l2 norm) of the difference between the two embeddings x and y.

dMRN(x, y) ≜
1

N

N∑
k=1

max
m=1...M

max(0, xkM+m − ykM+m) + ∥xkM+m − ykM+m∥2 (4)

Given any function f : X → RNM , Eq. (4) defines a quasimetric distance on X . Liu et al. (2023) show that
for sufficiently large M , this parameterization is universal. Thus, fitting a quasimetric distance function
can be accomplished by fitting dMRN(f(x), f(y)) for a sufficiently expressive class of representations
f ∈ Φ. We make use of this architecture with a learned representation over S × A ∪ S to express our
goal-conditioned Q function Qg(s, a) and value function Vg(s) as distances between states/state-action
pairs and goals, as demonstrated in (Myers et al., 2025c).

4 Multistep Quasimetric Estimation (MQE)

In this section, we develop MQE framework based on quasimetric architectures, which can be broken
down into 3 parts: (1) multistep backup under a quasimetric architecture, (2) imposing action invariance
as an additional optimization objective, (3) practical implementation details for extracting the goal-
reaching policy. To the best of our knowledge, MQE is the first method to effectively combine multistep
returns with a quasimetric distance parameterization, and achieves superior results to previous methods
that use TD returns, contrastive learning for value estimation, or hierarchical methods.

Definitions. We will define a distance (quasi)metric over states and state-action pairs that is proportional
to the goal-conditioned Q and V functions (Myers et al., 2024):

Qg(s, a) = Vg(g)e
−d((s,a),g), Vg(s) = Vg(g)e

−d(s,g). (5)

We learn a parameterized form of this distance with learned state and state-action ψ(s) ∈ RNM and
ϕ(s, a) ∈ RNM representations and a quasimetric distance function (4): :

d
(
(s, a), g

)
≜ dMRN

(
φ(s, a), ψ(g)

)
, d(s, g) ≜ dMRN

(
ψ(s), ψ(g)

)
. (6)

4.1 Multistep Returns with Quasimetric Architecture

The first design principle of MQE is to use multistep returns under a quasimetric architecture. To that
end, we start with the fitted onestep Q iteration that operates on quasimetric distance representations, in
which← denotes regressing from the LHS to the RHS:
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e−d((s,a),g) ← E{s′∼P(s′|s,a)}∼D[γ · e−d(s
′,g)]. (7)

This is similar to optimizing the critic in traditional RL (Kostrikov et al., 2022; Lillicrap et al., 2019), the
main difference being that we use a quasimetric architecture to represent the Q and value function. Due
to the quasimetric architecture of the network, the reward signal is embedded within the parameterized
distance, as Vg(s) is defined to have a value of Vg(g) > 0 when s = g. We denote this regression objective
as T .

Our insight for the T objective described in Eq. (7) is that, instead of applying this invariance to only
the future state s′ ∼ P(s′ | s, a), we can extend this principle to any state between the current state and
goal. This transforms a onestep optimization into a on-policy multistep optimization procedure. To do
so, we first define the shorthand swt , which refers to a “waypoint” between the current state and goal
state. Empirically, we find that using a combination of Bernoulli distribution and geometric distribution
(described in Eq. (8)), capped at the index of the future state work the best.

swt ← st+k′ for

{
k′ ∼ min(Geom(1− λ),K) with probability 1− p,
k′ = 1 with probability p.

(8)

We now optimize the same objective as in Eq. (7), but across any such waypoint we sample. To account
for the multistep nature of this objective, we modify Eq. (7) below to accommodate such changes.

e−d((s,a),g) ←− E{(st,at),swt }∼D[γ
k′ · e−d(s

w
t ,g)]. (9)

We denote this new objective as Tβ , as the future state of the sample is restricted by trajectories generated
by πβ . This is similar to the n-step returns in prior work (Li et al., 2025; Munos et al., 2016; Sutton, 1988),
although we do not sample future states with a fixed number of steps. In practice, we can use any loss
function to make the LHS equal to the RHS (in expectation) concerning Eq. (7) and Eq. (9). We use a form
of Bregman divergence with LINEX losses (Parsian and Kirmani, 2002), as it does not incur vanishing
gradients when the two distances have become close in value (Banerjee et al., 2004; Myers et al., 2025c):

DT (d, d
′) ≜ exp(d− d′)− d′ (10)

Using this loss, we can concretely define both LTβ
and LT that can optimize the objectives of T and Tβ .

LTβ

(
ϕ, ψ; {si, ai, swi , gi, k′i}Ni=1

)
=

N∑
i=1

N∑
j=1

DT

(
d((si, ai), gj), d(s

w
i , gj))− k′i log γ

)
. (11)

These two losses, when applied to our quasimetric network, will allow us to propagate the value in
either a onestep or multistep manner.

Remark: relationship between p, multistep backup Tβ , and onestep backup T . By changing p, we can
adjust the distance (in expectation) from the waypoint from the current state, as p = 1 means that Tβ is
equivalent to T (as k′ = 1). We demonstrate in Section 5.3 why only using LT is insufficient for learning
a good distance representation and goal-conditioned policy.

4.2 Learning Value Functions via Enforcing Action Invariance

With respect to quasimetric networks, (Myers et al., 2024) has demonstrated that if the training data
is collected using a Markovian policy, then the optimal critic should observe the property of Action
Invariance. As a result, the optimal critic should observe the following property (Sutton and Barto, 2018):

V ∗
g (s) = max

a∈A
Q∗
g(s, a). (12)
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This can be satisfied, under our construction, if d(s, (s, a)) = 0 for each action a ∈ A (Myers et al., 2025c)
(action invariance). Since our construction of Q and value function do not observe this property, we
need to enforce it using gradient descent, as described in Eq. (13).

d(ψ(s), φ(s, a))← 0 (13)

We remark that this is also similar to the value loss seen in other offline RL methods that employ both a
value and Q function, namely IQL (Kostrikov et al., 2022) and TMD (Myers et al., 2025c), and the desired
outcome of Eq. (13) is similar to the value loss described in IQL when τ ≈ 1. One common failure case of
basic regressions, such as using L1 or L2 regression for Eq. (13), is that the algorithm quickly converges
to trivial solution in which φ(s, a) = ψ(s) = 0, which fails to learn any valuable distance measures. As
a result, TMD requires a hyperparameter ζ to regulate the magnitude of gradients of the invariance
loss. To counteract this, we use a smoother formulation that allows more relaxed enforcement of Eq. (13)
when the violation is low in magnitude. As a result, we can define LI as:

LI
(
φ,ψ; {si, ai}Ni=1

)
=

N∑
i,j=1

(
e−d(ψ(si),φ(si,aj)) − 1

)2
. (14)

Now the loss will scale with the magnitude of such deviation, which removes the need of hyperparameter
tuning for an appropriate multiplier as well as stabilizing training dynamics.

4.3 Policy Extraction

We extract the goal-conditioned policy π(s, g) : S2 → A using the learned distance using the behavior-
regularized deep-deterministic policy gradient (DDPG + BC) (Fujimoto and Gu, 2021):

Lµ(π; {si, ai, gi}Ni=1) = E
[ N∑
i,j=1

d
(
(si, π(si, gj)), gj

)
− α log π(ai | si, gi)

]
. (15)

Given that a smaller dmeasure correspond to a higher Q value, as defined in Eq. (5), we can maximize the
Q values by minimizing the distance produced by our quasimetric network. We tune the BC coefficient
α per environment. We provide more hyperparameter details in Section C.

4.4 Implementation Details & Algorithm

We concisely define our final learning objective in Algorithm 1. Unlike previous works in hierarchical
RL (Nachum et al., 2018; Park et al., 2024b), we randomly sample these waypoints, and we learn a single
critic Q that operates on S and A and a single goal-reaching policy πµ. As a result, our method does not
contain any additional components and is simpler to implement than these hierarchical methods.

Algorithm 1: Multistep Quasimetric Estimation

Require: Dataset D, Batch size B, training iteration T , Probability p
1: Initialize quasimetric network Qwith parameters (φ,ψ), goal-reaching policy πµ
2: for t = 1...T do
3: Sample {si, ai, s′i, swi , gi}Bi=1 ∼ D (8)
4: Update Qwith multistep backup by minimizing LTβ

(φ,ψ; {si, ai, swi , k′i}Bi=1) (9)
5: Update Qwith action invariance constraints by minimizing LI(φ,ψ; {si, ai}Bi=1) (14)
6: Update policy πµ with DDPG+BC by minimizing Lµ(πµ; {si, ai, gi}Bi=1) (15)
7: return πµ
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4.5 Analysis

The key theoretical result we show is that this algorithm is able to perform policy improvement on top
of the behavior policy πβ in a tabular setting under standard assumptions. The tabular version of MQE
can be viewed as executing three steps:

1. Minimize Eqs. (11) and (14) under the data distribution from πβ :

min
d̂∈DS×A∪S

E(s,a)∼pπβ ,g∼pπβ

[
DT

(
d((s, a), g),Epπβ (sw|s,a)[γ

k′e−d(s
w,g)]

)
+ (e−d(s,(s,a)) − 1)2

]
. (16)

2. Constrain the distance to be a quasimetric. Mathematically, this can be expressed as projecting the
distance into a quasimetric space via a path relaxation operator P : DX → QX (Myers et al., 2025a),
defined as

P(d)(x, z) ≜ min
y∈X

[
d(x, y) + d(y, z)

]
. (17)

Applying this to the learned distance, we construct d̃ = P d̂.

3. Extract the policy via Eq. (15):

min
π

E(s,a)∼pπβ ,g∼pπβ

[
d̃
(
(s, π(s, g)), g

)]
. (18)

This statement is formalized in Theorem 1 below.

Theorem 1. Suppose behavior policy πβ induces full support over state action pairs (s, a) ∼ dπβ in a tabular
setting. We fit a distance by minimizing Eq. (16) and extract a policy by minimizing Eq. (18). Then the extracted
policy π satisfies V πg (s) ≥ V πβ

g (s) for all s, g ∈ S.

The proof is provided in Section B.

5 Experiments

Our goal of experiments is to understand the benefits MQE brings when it comes to enabling a policy to
generalize compositionally (execute multiple tasks seen in training separately together) and in terms of
horizon (generalize over a longer task when a similar but shorter task was seen in training set). To that
end, we pose the following questions:

1. How much does MQE improve the horizon generalization abilities of agents?

2. What qualitative improvements does MQE bring in terms of compositional generalization?

3. What are the design decisions to ensure the success of MQE?

Experiment setup Our experiments use challenging, long-horizon problems in offline RL benchmarks
as well as real-world settings. We use OGBench (Park et al., 2025a) for our experiments on simulated
benchmarks and the BridgeData setup (Walke et al., 2024) for our real-world evaluation.

5.1 Simulated Evaluation on Offline Goal-Reaching Tasks

We evaluate MQE in both locomotion and manipulation in OGBench (Park et al., 2025a). For locomotion
tasks, in addition to the three standard sized mazes, we also designed a “colossal”-sized maze. This
maze is 50% larger than that of the “giant”-sized mazes currently available on OGBench, and it requires
as many as 4000 steps for an agent to traverse through the entire maze (see Fig. 2). We employ 13
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visual-antmaze-giantscene-play antmaze-colossal puzzle-4x4

Figure 2: Tasks from various state and pixel-based environments for OGBench. Antmaze-colossal is
50% larger than any other mazes available on OGBench, and in stitch datasets, test the agent’s ability
to generalize over horizon that is up to 1000% longer.
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(a) The overall success rate across a set of most chal-
lenging OGBench evaluation tasks (90 tasks in total).
MQE achieves by far the best performance over these
challenging tasks.

medium large giant colossal
0

20

40

60

80

Maze Size

Horizon Generalization in AntMaze

MQE (Ours) TMD CRL HIQL

(b) Horizon generalization on antmaze-*-stitch dataset with
training trajectories that are only 4m long. This means that
colossal mazes have tasks that have horizons that are 1000%
longer than those seen in the training set. MQE also retains the
best horizon generalization skills compared to previous methods.

Figure 3: Comparisons of MQE against prior methods on OGBench.

state-based environments and 5 pixel-based environments (each pixel-based environment takes in a
64× 64× 3 observation) with 5 tasks each, bringing a total of 90 tasks to evaluate in our OGBench setup.

We compare against the following baselines: GCIQL (Kostrikov et al., 2022), CRL (Eysenbach et al., 2022),
QRL (Wang et al., 2023), HIQL (Park et al., 2024b), nSAC+BC (Haarnoja et al., 2018; Park et al., 2025b),
CMD (Myers et al., 2024), and TMD (Myers et al., 2025c). These methods use either only TD learning
(GCIQL, QRL, nSAC+BC), MC value estimation via contrastive learning (CRL, CMD, TMD), use horizon
reduction techniques (nSAC+BC with value horizon, HIQL with policy horizon) or use a quasimetric
architecture for distance learning (QRL, CMD, TMD). We detail how these methods are implemented in
Section C. By comparing against these methods, we can gain a better outlook on what advantage MQE
has over other works that learn distances only locally, globally, or in a hierarchical manner.

Table 4 and Fig. 3 show the performance of MQE across state- and pixel-based environments on OGBench.
In general, MQE exhibits considerably better capabilities of extracting goal-reaching policies, and in
some instances (such as humanoidmaze-giant-stitch, exhibits a 10× improvement over the previous
best methods, including HIQL and n-SAC+BC, which does explicit policy horizon reduction. The only
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exception to this is vision-based manipulation, where HIQL performed better. We also compared the
performance of MQE against TMD, CRL, and HIQL on antmaze of various sizes, with the training set
fixed to only 4 meters long via the usage of stitch datasets. We show that as the evaluation horizon
becomes longer, MQE still exhibits strong horizon generalization, and it is the only method that still
exhibits nonzero success rates in colossal mazes.

5.2 Real-World Evaluation of MQE

Open drawer and place Quadruple Pick and Place

goal state goal state

ob
se

rv
at

io
n

go
al

Figure 4: We evaluate MQE on multi-stage manipu-
lation tasks on BridgeData. Below are examples of
the starting observations and goal images.

While OGBench environments focus on learning
long-horizon tasks using mixed quality data in a
single environment, we can use real-world Bridge-
Data tasks to evaluate a more sophisticated kind
of compositionality. BridgeData tasks consist of in-
dividual object manipulation primitives (e.g. pick-
ing up a banana and placing it on a plate), and
our evaluation tasks are significantly longer (up
to 4x), requiring the composition of multiple tasks
in the dataset (e.g. placing four different objects
on the plate) (Walke et al., 2024). The dataset does
not contain any example trajectories that compose
multiple tasks in this way. Accomplishing this
sort of temporal composition is an important goal
in offline RL, because it allows “stitching” long
behaviors out of shorter chunks.

We designed the tasks on BridgeData to test
whether policies can compose multiple tasks at
once without external guidance. Instead of in-
structing the policy to complete a single pick and
place (abbreviated as PnP), we evaluate a policy’s
performance with PnP of up to 4 objects in sequence. To our knowledge, such a task in BridgeData
has never been completed without the use of hierarchical policies or high-level planners. We also
evaluate the policy on tasks requiring dependencies (i.e. the second task can only succeed when the first
task succeeds), with the policy being tasked with opening a drawer and then placing the item within
the drawer all conditioned by one image of an opened drawer with an item inside. Only one previous
work (Myers et al., 2025b) has shown consistent success when using an end-to-end policy, noting the
challenges involved with this type of policy. Examples of the tasks are shown in Fig. 4.

We use a 6DoF, 5Hz, WidowX250 manipulator for our robot learning tasks and we train and deploy
a policy π(a | s, g) conditioned on observations and goal images. We compare against the following
methods: GCBC (Ding et al., 2020), GCIQL, and TRA (Myers et al., 2025b). We compare MQE against
GCIQL, a commonly used offline RL method, and we compare MQE against both GCBC (Ding et al.,
2020) and TRA (Myers et al., 2025b). Comparisons against both GCBC and TRA are important as ,
TRA learns a set of representations that align present and future representations for compositional
generalization. TRA is designed for following both goal images and language instructions, but we only
use goal images as the modality to test. We provide more details on policy training in Section D.1.

As in prior work that focused on long-horizon manipulation tasks (Black et al., 2024; Shi et al., 2025), we
use task progress to measure the effectiveness of these policies due to the long-horizon nature of these
tasks. We detail more on the experimental setup and how we assign progress in Section D.1.

Fig. 5 reports the overall task progress on 2 single-stage tasks and 4 tasks that require compositionality,
and Table 6 reports the binary success rate of each task. We provide further analysis of policy rollout in
Section D. Here, we observe that while MQE helps with single-stage tasks (single PnP, open drawer)
against GCBC, both TRA and GCIQL can still perform competitively. However, as the number of tasks

9
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Table 1: Ablation results

(a) LI Ablation

Configuration Success Rate (%)

With LI 26.5(±1.3)

Without LI 7.9(±0.7)

Using expectile κ = 0.7 11.3(±1.1)

Using expectile κ = 0.9 8.8(±0.7)

(b) swt Sampling Ablation

Configuration Success Rate (%)

k′ ∼ Eq. (8) 26.5(±1.3)

k′ ∼ Geom(1− λ) 22.1(±1.1)

k′ ∼ Unif[1,K] 18.9(±0.9)

k′ ∼ Unif[1, 50] 17.8(±1.3)

k′ = 50 1.7(±0.5)

k′ = 1 0(±0.0)

needed to be performed in sequence increases, we see that MQE is able to retain a relatively high task
progress, while both GCIQL and TRA’s performance regressed.
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Figure 5: Task progress on BridgeData tasks based on how
many consecutive tasks the agent is required to perform,
plotted with both the mean and the standard error bars.

Taking a look at the two most difficult tasks,
we have quadruple PnP and drawer open
and place. These tasks are the most chal-
lenging since quadruple PnP required the
agent to reason 4 consecutive primitives to-
gether, and drawer open and place required
the agent to complete the first task (open
the drawer) before completing the second
task (putting the mushroom in the drawer).
Among all methods that we have tested,
only MQE and TRA displayed positive suc-
cess rate, as demonstrated in Table 6. We
provide more details on policy rollouts in
Section D.

5.3 Ablation Studies

In this section, we explore the design
choices involved for MQE. To that end, we
investigate the heuristics needed for MQE.
We use the humanoidmaze-giant-stitch
environment and dataset, and explore the
following design questions:

• How do different distributions for sampling the waypoint swt affect MQE’s success?

• Is the objective of action invariance I necessary in MQE?

• How do λ and p, the two hyperparameters that affect the geometric sampling of swt , change MQE’s
performance?

Should we use action invariance for value learning? Table 1a shows that when using the same set of
hyperparameters, imposing action invariance as an explicit term helps to learn a much better critic, as
compared to only using LTβ

. Additionally, we also implemented value learning via expectile loss in
(Kostrikov et al., 2022). While expectile loss performed well as a value learning objective, it performed
considerably worse than action invariance, which validates the theoretical results shown in Section B.

How should we sample our waypoints? We first evaluate the best distribution to sample future way-
points. Table 1b shows that when using a geometric distribution, we achieved much better performance

10
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than using a uniform distribution or using a fixed interval. We believe that since the goals are sampled
via a geometric distribution, matching the waypoint with another geometric distribution helps the
network to generalize better between the two separate observations.

More Multistep Enforcement

M
ore D

istant W
aypoints

Figure 6: Sucess rate of MQE on
humanoidmaze_giant_stitch using α =
0.01, averaged over 4 seeds.

We then investigate how to combine the hyperparameters
λ and p for best performance. Fig. 6 provides an illustration
of success rate over pairs of (p, λ). The figure suggests that
both hyperparameters need to be relatively high in value.
This indicates that MQE needs: (1) a waypoint far enough
for the value to rapidly propagate and (2) a high enough p to
ensure that local consistencies are being respected. We also
see that if we increase the value of the sampling coefficient
p, MQE cannot learn a good policy for goal-reaching. This
shows that T is not sufficient to learn a good distance for
policy learning, as the agent did not learn a good distance
representation.

6 Conclusion

We introduced Multistep Quasimetric Estimation (MQE),
a novel method that combines the benefits of fast value
propagation via multistep backup and the global constraint
of quasimetric distances. MQE is able to solve challenging
and long-horizon tasks in simulated benchmarks and on a
real-world robotic manipulator.

Limitations and Future Work. While MQE achieves strong performance, we sample the waypoints
based on heuristics. This could incur more computation costs when finding the optimal way of sampling
the waypoint for environments that are outside of our evaluation range. Future work can investigate the
theoretical connection between sampling waypoints and successor distances, investigate the effect of
such policy learning on different policy classes such as action-chunking policies, and apply the same
method across methods beyond offline RL in scenarios such as offline-to-online RL or online RL.
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A Website and Code
We provide the website, alongside the full implementation of MQE, TMD, CMD, and the new antmaze-
colossal mazes on OGBench at the following URL: https://mqe-paper.github.io.

B Proof of Policy Improvement
Here, we provide the full proof of Theorem 1.

Theorem 1. Suppose behavior policy πβ induces full support over state action pairs (s, a) ∼ dπβ in a tabular
setting. We fit a distance by minimizing Eq. (16) and extract a policy by minimizing Eq. (18). Then the extracted
policy π satisfies V πg (s) ≥ V πβ

g (s) for all s, g ∈ S.

Proof of Theorem 1. We can express the algorithm described in Section 4.5 as the following two steps
(combining the quasimetric projection and Eq. 18):

(1) min
d̂∈DS×A∪S

E(s,a)∼pπβ ,g∼pπβ

[
DT

(
d((s, a), g),Epπβ (sw|s,a)[γ

k′e−d(s
w,g)]

)
+ (e−d(s,(s,a)) − 1)2

]
(2) min

π
E(s,a)∼pπβ ,g∼pπβ

[
P d̂

(
(s, π(s, g)), g

)]
Define dπβ

SD to be the modified successor distance induced by the behavior policy πβ , as defined by Myers
et al. (2025c, Eq. (7)).

The key is that the two terms in step (1) act on different parts of d̂’s domain. The LHS term acts on
S ×A ∪ S , while the RHS acts on S × S ∪ A. The LHS regresses d̂ towards dπβ

SD on S ×A ∪ S , while the
RHS enforces action-invariance on S × S ∪ A. The result is that d̂ ≤ d

πβ

SD while corresponding to the
temporal distances of some family of goal-parameterized policies. It follows that since P is monotone
decreasing, we have P d̂ ≤ dπβ

SD , and this still corresponds to the temporal distances of valid goal-reaching
policies as a consequence of the existence of a stationary optimal goal-reaching policy in MDPs/CMPs.

Step (2) therefore necessarily recovers a policy π such that dπSD ≤ d
πβ

SD . In other words, the extracted policy
π satisfies V πg (s) ≥ V πβ

g (s) for all s, g ∈ S.
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Task 1 Task 2 Task 3 Task 4 Task 5

Figure 7: Task visualizations from antmaze-colossal environment. The ant occupies the starting
position, and it must reach the red dot to complete the task.

C OGBench Experiment Details

This section provides additional experiment details for the OGBench experiments in Section 5.1.

C.1 Baseline Details

Here, we briefly describe the inner workings of each baseline on OGBench.

Goal-conditioned Implicit Q-learning (GCIQL) uses expectile regression to learn a value function. Quasi-
metric RL (QRL) learns a quasimetric distance using bootstrapping under a quasimetric architecture,
and constrains the distance with one-step cost in deterministic settings. Contrastive RL (CRL) uses binary
cross entropy to regress the critic (defined as a dot product) towards goals that are future states and
repel those that are not. Contrastive Metric Distillation (CMD) uses InfoNCE loss (van den Oord et al.,
2019) to recover Qβ . Temporal Metric Distillation (TMD) (Myers et al., 2025c) use contrastive learning to
learn the behavior Q-function, and then tightens the bound to optimize towards Q∗. CMD and TMD
enforce the quasimetric property of successor distance architecturally.

Additionally, we compare MQE against two horizon reduction methods, n-step Goal-Conditioned Soft
Actor-Critic with Behavior Cloning (n-SAC+BC) and Hierarchical Implicit Q learning (HIQL), which
explicitly reduce the policy and value horizon separately. n-SAC+BC is similar to SAC+BC, but with
n-step updates as described in Eq. (19) for a sampled batch B.

LQ = E{si,ai,...,si+n,ai+n,g}∼B[LBCE(Q(sh, ah, g),

n−1∑
i=0

γir(sh+i, g) + γnQ̄(sh+n, π(sh+n, g), g))] (19)

Where LBCE(x, y) ≜ −y log x− (1− y) log(1− x), as it demonstrated superior performance in (Park et al.,
2025b). HIQL trains the same value function as GCIQL, but the agent extracts a hierarchical policy using
AWR-like objectives. All policies trained on OGBench are designed to return a multimodal Gaussian
distribution N (µ; Σ), and during inference time, the neural network produces the distribution, and the
policy samples from that as action.

C.2 Task visualization

We provide the tasks used for antmaze-colossal environment on Fig. 7. The maze itself is 24 blocks in
height and 18 blocks in width, which is 50% larger than the giant mazes in each dimension.
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Table 2: Network configuration for MQE on OGBench.

Configuration Value

batch size 256
latent dimension size 512

encoder MLP dimensions (512, 512, 512)
policy MLP dimensions (512, 512, 512)

layer norm in encoder MLPs True
visual encoder (visual- envs) impala-small

MRN components 8
Discount (γ) 0.995

Waypoint discount (λ) 0.95
Probability p for sampling next state s′t for waypoint 0.2 (state-based), 0.1 (pixel-based)

Table 3: BC coefficient α for each environment

Environment α

antmaze-navigate 0.1
antmaze-stitch 0.03

antmaze-explore 0.003
humanoidmaze 0.01

pointmaze 0.03
{cube,puzzle,scene-play} 1.0

{visual-{cube,puzzle,scene-play}} 3.0
*-noisy 0.1

visual-antmaze 0.3

C.3 Implementation Details & Hyperparameters

Table 2 details the common hyperparameters for all methods on OGBench. Table 3 shows the α
regularization hyperparameter that was found to be the best for performance.

To regulate LI , we impose a hyperparameter ζ to act as a multiplier. This ensures that across both visual
and state-based environment, LI does not immediately overpower LTβ

. The final critic loss becomes:

LQ(φ,ψ; {si, ai, swi }Bi=1) = LTβ
(φ,ψ; {si, ai, swi , k′i}Bi=1) + LI(φ,ψ; {si, ai}Bi=1) (20)

We use LINEX losses (Garg et al., 2023; Parsian and Kirmani, 2002) to parameterize the Bregman
divergence in LTβ

, and to prevent exploding gradients, we set the

We use a batch size of 256 for MQE, and we use NVIDIA A6000 GPUs for our experiments. For state-
based environments, it takes around 2.5 hours to finish both training and evaluation. For pixel-based
environments, it takes 6 hours to complete both training and evaluation.

C.4 Policy evaluation

We maintain an evaluation procedure similar to that of OGBench’s. We evaluated each policy 50 times
for the last 3 training epochs (800k, 900k, 1M step for state-based environments, 300k, 400k, 500k in
pixel-based environments). For each of these evaluation epochs, use 8 seeds for every state-based
environment and 4 seeds for every pixel-based environment.

16



Multistep Quasimetric Learning for Scalable Goal-conditioned Reinforcement Learning

Table 4: OGBench Evaluation
Methods

Dataset MQE TMD CMD CRL QRL GCIQL HIQL n-SAC+BC

pointmaze_giant_navigate 72.8(±2.5) 39.9(±5.2) 45.3(±3.7) 27.4(±3.4) 68.5(±2.8) 0.0(±0.0) 45.9(±3.0) 0.0(±0.0)

pointmaze_giant_stitch 59.2(±3.2) 9.1(±1.0) 8.1(±0.6) 0.0(±0.0) 49.7(±2.3) 0.0(±0.0) 0.0(±0.0) 0.4(±0.1)

antmaze_large_explore 67.7(±2.8) 0.9(±0.2) 0.8(±0.3) 0.3(±0.1) 0.0(±0.0) 0.4(±0.1) 3.9(±1.8) 0.2(±0.1)

antmaze_giant_stitch 35.1(±1.7) 2.7(±0.6) 2.0(±0.5) 0.0(±0.0) 0.4(±0.2) 0.0(±0.0) 1.8(±0.6) 9.2(±2.1)

antmaze_colossal_navigate 48.6(±2.4) 22.3(±1.1) 22.5(±3.1) 14.6(±1.8) 0.0(±0.0) 0.0(±0.0) 0.0(±0.0) 0.3(±0.1)

antmaze_colossal_stitch 27.6(±2.9) 0.0(±0.0) 0.2(±0.1) 0.0(±0.0) 0.0(±0.0) 0.0(±0.0) 0.0(±0.0) 0.5(±0.3)

humanoidmaze_giant_navigate 46.5(±2.5) 9.2(±1.1) 5.0(±0.8) 0.7(±0.1) 0.4(±0.1) 0.5(±0.1) 12.5(±1.5) 3.2(±0.5)

humanoidmaze_giant_stitch 26.5(±1.3) 6.3(±0.6) 0.2(±0.1) 1.5(±0.5) 0.4(±0.1) 1.5(±0.1) 3.3(±0.7) 1.7(±0.1)

cube_double_play 40.8(±1.2) 13.1(±2.3) 0.2(±0.1) 1.5(±0.5) 0.4(±0.1) 40.2(±1.7) 6.4(±0.7) 19.1(±0.3)

cube_triple_noisy 18.3(±2.2) 2.1(±0.6) 1.5(±0.5) 2.7(±0.5) 3.4(±0.4) 1.8(±0.2) 2.6(±0.4) 1.4(±0.3)

puzzle_4x4_play 18.7(±2.3) 10.0(±1.4) 0.2(±0.1) 1.5(±0.5) 0.4(±0.1) 25.7(±1.1) 7.4(±0.7) 11.4(±0.9)

scene_play 76.8(±2.1) 21.9(±1.9) 1.2(±0.4) 18.6(±0.8) 5.4(±0.3) 51.3(±1.5) 38.2(±0.9) 17.6(±1.4)

scene_noisy 30.8(±1.6) 19.6(±1.7) 4.0(±0.7) 1.2(±0.3) 9.1(±0.7) 25.9(±0.8) 25.2(±1.3) 19.1(±2.2)

visual_scene_play 38.1(±3.2) 20.7(±2.5) 16.1(±2.2) 9.6(±0.6) 5.4(±0.3) 12.2(±0.8) 49.9(±0.6) 7.1(±1.2)

visual_cube_triple_play 19.8(±0.9) 17.9(±1.3) 18.9(±1.1) 16.9(±1.1) 16.3(±0.3) 15.2(±0.6) 21.0(±0.2) 21.1(±2.4)

visual_cube_double_noisy 25.9(±1.6) 14.2(±1.3) 0.3(±0.3) 6.0(±1.4) 6.1(±1.2) 21.6(±0.9) 59.4(±1.6) 22.7(±1.1)

visual_cube_triple_noisy 25.0(±1.2) 17.7(±0.7) 16.1(±0.7) 15.6(±0.6) 8.6(±2.1) 12.5(±0.6) 21.0(±0.7) 17.1(±0.3)

visual_puzzle_4x4_play 17.9(±1.6) 9.8(±3.6) 7.2(±0.4) 9.6(±3.2) 0.0(±0.0) 16.2(±2.2) 60.1(±20.4) 10.3(±2.6)

visual_antmaze_giant_stitch 26.9(±3.1) 14.5(±2.5) 22.3(±1.9) 0.1(±0.1) 0.0(±0.0) 0.0(±0.0) 0.2(±0.1) 7.6(±1.1)

Overall 36.3(±0.6) 13.0(±0.5) 8.7(±0.3) 6.2(±0.3) 9.8(±0.3) 11.8(±0.2) 18.7(±1.2) 8.5(±0.3)

We bold the best performance. Success rate (%) is presented with the standard error across eight seeds for state-based environments and
four seeds for pixel-based environments. All datasets contain 5 separate tasks each. We record the aggregate across all 5 tasks.

C.5 Full Result Table

We record the full success rate of all tasks in OGBench in Table 4.

C.6 Visualizations

We provide visualizations on antmaze-large-explore to show the learned distances d(s, g) for each s
in the environment with Fig. 8. We calculate the distance in IQL using the learned value function Vg(s)
directly. For CRL, we use the following equation to calculate the distance to match the BCE formulation
being used in it: d(s, g) = − log σ(φ(s, 0)⊺ψ(g)), where 0 corresponds to zero vector with the same
dimension as the action. Given that CMD only learns one representation φ(s, a), we parameterize the
distance as d = dMRN(φ(s, 0), φ(g, 0)). In TMD, we use d(s, g) = d(ψ(s), ψ(g)).

Out of all the heatmaps, we see that both GCIQL and CMD carry features that are similar to L2 distance,
while CRL and QRL contain many visual artifacts. GCIQL also has the problem of value propagation,
where only a small region around the goal actually has a low distance measure. TMD has the best
visualization out of all baselines, but still suffer from minor artifacts. In contrast, MQE recovers a
distance that has the desired structure, which makes it desirable for learning a good goal-reaching policy.

D BridgeData Experiment Details

We evaluated each policy with a total of 15 trials each for each task. For each of the pick-and-place tasks,
we assign 1 points for each successful pick and place (i.e. move a desired object to the desired location).
Therefore, a policy can earn a maximum of i points for each PnP task that manipulates i objects.

For open drawer and place, we assign one point if the policy opens the drawer to the extent where the
mushroom can be placed, but does not pull the drawer off the base completely, and assign another point
if the policy is able to put the mushroom in the drawer.
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(a) GCIQL (b) QRL (c) CRL

(d) CMD (e) TMD (f) MQE (Ours)

d(◦, ⋆)

0 MAX

Figure 8: Comparisons of different learned distances. Brighter colors correspond to a lower distance
measure. The agent starts at the position of the white star and the goal is set at the gold star. We compare
especially the structure of the distance, as we normalize the ddpg loss in policy learning.

Table 5: Network configuration for MQE on BridgeData.

Configuration Value

latent dimension size 256
encoder MLP dimensions (256, 256, 256)

policy MLP dimensions (256, 256, 256)
layer norm in encoder MLPs True

MRN components 8
Discount (γ) 0.98

Waypoint discount (λ) 0.95
Probability p for directly imposing LT 0.2

D.1 Training Configurations

We use a pretrained ResNet34 as the backbone of the policy and encoders. We do not share the actor
and critic encoder for both GCIQL and MQE. We co-train the actor and the critic for a total of 500,000
total steps with a batch size of 128, which takes around 60 hours when the model is trained on 4 v4-8
TPUs. For TRA, we produce the embedding of two separate encoders ϕ, ψ, and align each other using
symmetric InfoNCE loss. During inference, we use FiLM (Perez et al., 2017) to embed the learned goal
representation into the actor, staying consistent with the implementation from (Myers et al., 2025b). In
addition, we also describe the common hyperparameters used for BridgeData setup at Table 5.
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D.2 Task Successes

Table 6 records the success rate of each task across all six tasks that we evaluate, and Fig. 9 records the
task progress for each task. In Table 6, we only measure whether each task has been completed to its
fullest. While it does give out a stronger signal on whether a task displays nonzero success rate, it does
not provide as much information on how the task was progressing overall.
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Figure 9: Task progress on BridgeData tasks; plotted with both the mean and the standard error bars.

Table 6: Binary success counts for each task.

Task MQE (Ours) GCBC GCIQL TRA

Single PnP 12/15 5/15 10/15 9/15
Double PnP 10/15 1/15 4/15 6/15
Triple PnP 4/15 0/15 0/15 1/15
Quadruple PnP 2/15 0/15 0/15 0/15
Open Drawer 12/15 10/15 5/15 11/15
Open Drawer & Place 5/15 0/15 0/15 1/15

E Policy Rollout in BridgeData
We provide the rollout of triple PnP in Fig. 10. We especially consider TRA because it also exhibits
compositional generalization, yet there is no explicit policy improvement as compared to offline RL
methods such as MQE.
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Goal observation

MDW (Ours) ✅

TRA-g

Poor policy extraction! 

❌

Figure 10: Inference from triple pnp task. We note that due to poor policy extraction and generalization,
TRA is not able to complete the task.
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